ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Shigeki Shiba, Tomohiro Sakai
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 371-383
Technical Note | doi.org/10.1080/00295450.2021.1913032
Articles are hosted by Taylor and Francis Online.
The Purdue Advanced Reactor Core Simulator (PARCS) three-dimensional neutron kinetics code and the TRACE nuclear systems analysis code were interfaced. This provides a best-estimate coupled code system for performing transient plant calculations with reactivity feedback from a detailed core model, significantly contributing to nuclear power plant safety analyses. This study performed steady-state and transient simulations of Peach Bottom 2 Turbine Trip Test 2 (PB2 TT2) using the CASMO5/TRACE/PARCS coupled code. Consequently, CASMO5/TRACE/PARCS simulates the rapid positive reactivity addition caused by the sudden closure of the turbine stop valve. Specifically, the discrepancy in the maximum total power during the transient condition was within 3% compared with the PB2 TT2 experimental data. Furthermore, the sensitivity of the thermal-hydraulic channel (CHAN) component modeling in the coupled CASMO5/TRACE/PARCS code revealed that the number of CHAN components influenced the assembly radial power peaking factor in the PB2 TT2 transient calculation.