ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
Selcen Uzun Duran, Pelin Uslu Kiçeci, Bilge Demirköz
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 364-370
Technical Paper | doi.org/10.1080/00295450.2021.1888617
Articles are hosted by Taylor and Francis Online.
The Middle East Technical University Defocusing Beamline (METU-DBL) is being constructed in order to perform single event effects tests for the electronic components in accordance with the European Space Agency (ESA) European Space Components Coordination (ESCC) No. 25100 standard. The aim of this beamline is to provide a suitable test area at the end of the beamline using the beam elements, such as collimators and magnets. Shielding is a crucial precaution for the safety of the radiation workers and the protection of the electronic components from the detrimental effects of radiation. In the METU-DBL, shielding studies have started with the first protective collimator because the proton beam hits the collimator, resulting in secondary particle production that increases the dose level in the research and development (R&D) room. The shielding studies of the first protective collimator used in the pretest setup of the METU-DBL are presented in this study. The whole beamline was defined in the FLUKA simulation program to calculate the absorbed radiation dose and make shielding designs. Various shielding designs were studied in FLUKA and the 15th one was selected as a suitable shielding design for the first protective collimator. This shield was manufactured and mounted on the first protective collimator and used in 20 irradiations during the pretests. At the end of 20 irradiations, it was observed that the shield is effective at decreasing the dose level in the R&D room.