ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michael A. Reichenberger, Jagoda M. Urban-Klaehn, Jason V. Brookman, Joshua L. Peterson-Droogh, Jorge Navarro, Richard H. Howard
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 303-309
Technical Paper | doi.org/10.1080/00295450.2021.1903299
Articles are hosted by Taylor and Francis Online.
Production of high specific activity (HSA) 60Co has recently resumed at the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The technical steps of performing in-canal assay of HSA 60Co targets at the ATR are described herein. The HSA targets are assayed on a regular basis, between cycles at the ATR, in order to assess the progress of activation. The targets are also assayed at the conclusion of the irradiation in order to provide activity estimates for the distributor and to be used for safety and shipping evaluations. These target assay activities must take place in the ATR canal to provide sufficient radiological shielding. A specialized assay fixture is used in conjunction with custom 60Co radiation standards to assess the irradiated target. The specific activity of each irradiated target was determined by first measuring the 60Co standards to determine a sensitivity factor. Then, each irradiated target was measured, and the integrated measurement was multiplied by the sensitivity factor to determine the total activity of the irradiated target. Finally, a correction factor was determined to adjust the reported activity, accounting for differences in the physical geometries of the standards and targets. These methods were used to accurately assay the gross activity of nine irradiated 60Co targets, two of which were delivered to the distributor where confirmatory hot-cell assays were performed verifying the accuracy of the in-canal assay method.