ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Michael A. Reichenberger, Jagoda M. Urban-Klaehn, Jason V. Brookman, Joshua L. Peterson-Droogh, Jorge Navarro, Richard H. Howard
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 303-309
Technical Paper | doi.org/10.1080/00295450.2021.1903299
Articles are hosted by Taylor and Francis Online.
Production of high specific activity (HSA) 60Co has recently resumed at the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The technical steps of performing in-canal assay of HSA 60Co targets at the ATR are described herein. The HSA targets are assayed on a regular basis, between cycles at the ATR, in order to assess the progress of activation. The targets are also assayed at the conclusion of the irradiation in order to provide activity estimates for the distributor and to be used for safety and shipping evaluations. These target assay activities must take place in the ATR canal to provide sufficient radiological shielding. A specialized assay fixture is used in conjunction with custom 60Co radiation standards to assess the irradiated target. The specific activity of each irradiated target was determined by first measuring the 60Co standards to determine a sensitivity factor. Then, each irradiated target was measured, and the integrated measurement was multiplied by the sensitivity factor to determine the total activity of the irradiated target. Finally, a correction factor was determined to adjust the reported activity, accounting for differences in the physical geometries of the standards and targets. These methods were used to accurately assay the gross activity of nine irradiated 60Co targets, two of which were delivered to the distributor where confirmatory hot-cell assays were performed verifying the accuracy of the in-canal assay method.