ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Pietro Brazzale, Aurélien Chassery, Thierry Gilardi, Christian Latgé, Xuân-Mi Meyer, Xavier Joulia
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 284-294
Technical Paper | doi.org/10.1080/00295450.2021.1895661
Articles are hosted by Taylor and Francis Online.
In the framework of sodium fast reactors, the management of tritium contamination in the sodium secondary circuit and the control of its release into the atmosphere is fundamental. In order to capture and recover tritium by coprecipitation worth hydrogen in cold traps, it is necessary to maintain a certain amount of hydrogen dissolved in the liquid sodium stream. Hydrogen injection by permeation through nickel membranes has been proposed to provide a continuous hydrogen intake to a liquid sodium stream, allowing the desired hydrogen concentration to be reached. A permeator prototype and the related process have been designed. Permeation tests have been carried out in an experimental facility set up at CEA Cadarache at sodium temperatures from 375°C to 450°C and hydrogen partial pressures from 5 × 103 to 3 × 104 Pa in order to quantify their influence on hydrogen permeation flux. Measurements on both the gas and sodium sides provide a complete hydrogen content observability over the system. Experimental results show a good agreement with the theoretical permeation laws for hydrogen pressures below 2 × 104 Pa and provide an estimation of the temperature dependency of the permeability coefficient, which will be useful for the industrial scale-up of the process.