ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
J. Haroon, E. Nichita
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 246-267
Technical Paper | doi.org/10.1080/00295450.2021.1929768
Articles are hosted by Taylor and Francis Online.
A new 37-element PHWR fuel bundle, designed for molybdenum-99 production, has been proposed previously. The new bundle has been shown to have lattice properties and reactivity feedback effects equivalent to the standard PHWR bundle. This study looks at the effect the use of molybdenum-99-producing bundles has on the reactivity worth of reactivity devices, through the prism of reactivity-device macroscopic-cross-section increments. The study utilizes three-dimensional supercell configurations and the neutron transport code DRAGON to calculate and compare the incremental macroscopic cross sections and supercell reactivity for adjuster absorbers, shutoff absorber rods and liquid zone controllers when surrounded by molybdenum-99-producing bundles and by regular bundles. Two geometrical representations of fuel bundles are used: a detailed, cluster, representation, whereby all fuel pins are modeled separately, and an annularized representation, whereby each ring of fuel pins and corresponding coolant is represented as a homogeneous annulus. The latter model is the one customarily used in production calculations for finding cross-section increments of reactivity devices.
The study finds that reactivity-device cross-section and supercell reactivity increments are very similar (< 2% difference in reactivity increments) for the case of the molybdenum-producing bundle and the regular bundle. The study also finds that the use of a detailed, cluster, geometrical representation of the fuel bundle produces slightly different cross-section increments and supercell reactivity increments than the use of an annularized geometrical representation. The supercell reactivity-increment difference between the two representations is found to be ~8.0% for adjuster absorbers and ~11.0% for shutoff absorber rods.