ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida-led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
Robert A. Joseph, III, Riley M. Cumberland, Robert L. Howard
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 129-136
Technical Paper | doi.org/10.1080/00295450.2021.1874818
Articles are hosted by Taylor and Francis Online.
This analytical study focuses on loading standardized transportation, aging, and disposal canisters (STADs) at commercial reactor sites and subsequent transportation, e.g., to a consolidated interim storage facility (CISF). Specifically, the amount of spent nuclear fuel (SNF) available to load into STADs with varying deployment dates is explored, and the scenarios are compared with a scenario in which STADs are never loaded at reactor sites. Two key findings are that about half of the U.S. inventory of commercial SNF could be captured in STADs if they were fully deployed by 2035 and that the percentage of SNF available to load into STADs decreases as STAD deployment is delayed.
In additional scenarios, the effects of shipping STADs directly from at-reactor spent fuel pools (SFPs) to a CISF are analyzed for a STAD full deployment year of 2035. A key finding from the analysis is that the dry storage of SNF in STADs at reactor sites can be minimized by direct shipment to a CISF from reactor site SFPs. However, minimizing dry storage at reactor sites means maximizing the receipt rate for STADs at a CISF, and there is likely a more optimal point between the two scenarios for an overall cost-effective operation of waste management systems.