ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Robert A. Joseph, III, Riley M. Cumberland, Robert L. Howard
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 129-136
Technical Paper | doi.org/10.1080/00295450.2021.1874818
Articles are hosted by Taylor and Francis Online.
This analytical study focuses on loading standardized transportation, aging, and disposal canisters (STADs) at commercial reactor sites and subsequent transportation, e.g., to a consolidated interim storage facility (CISF). Specifically, the amount of spent nuclear fuel (SNF) available to load into STADs with varying deployment dates is explored, and the scenarios are compared with a scenario in which STADs are never loaded at reactor sites. Two key findings are that about half of the U.S. inventory of commercial SNF could be captured in STADs if they were fully deployed by 2035 and that the percentage of SNF available to load into STADs decreases as STAD deployment is delayed.
In additional scenarios, the effects of shipping STADs directly from at-reactor spent fuel pools (SFPs) to a CISF are analyzed for a STAD full deployment year of 2035. A key finding from the analysis is that the dry storage of SNF in STADs at reactor sites can be minimized by direct shipment to a CISF from reactor site SFPs. However, minimizing dry storage at reactor sites means maximizing the receipt rate for STADs at a CISF, and there is likely a more optimal point between the two scenarios for an overall cost-effective operation of waste management systems.