A one-dimensional (1-D) thermal stratification (TS) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. This paper performs uncertainty quantification (UQ) of the 1-D TS model to evaluate its performance by considering the aleatoric uncertainties that existed in the model parameters and to identify the plausible sources of the epistemic uncertainties. The Latin hypercube sampling–Monte Carlo method (LHS-MC), which is elaborated with an example in this paper to facilitate its understanding and implementation, is used for the UQ process. The advantages of LHS-MC, including both better stability and better accuracy than the conventional random sampling–Monte Carlo method with fewer realizations, are demonstrated in this paper.

In total, 648 temperature measurements acquired from nine experimental transients performed in a university-scale Thermal Stratification Experimental Facility are used to evaluate the performance of the computational 1-D TS model. The UQ result shows that 77.5% of the experimental data can be predicted by the 1-D TS model within uncertainty ranges, which indicates the good performance of the computational model when the aleatoric uncertainties are correctly captured. The rest 22.5% of the experimental data are found located outside of the uncertainty ranges, which reveals the existence of the epistemic uncertainties caused by the lack of understanding of the TS phenomenon and defects in the 1-D model. The simple jet model currently employed by the 1-D TS model is thought to be one of the attributors to these defects.