ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
October 2024
Latest News
Westinghouse reorganization creates two new business units
Westinghouse Electric Company has announced that it will create two new global business units from its Operating Plant Services business. Effective January 1, 2025, the new units will be Long-Term Operations and Outage & Maintenance Services.
Cihang Lu, Zeyun Wu
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 37-48
Technical Paper | doi.org/10.1080/00295450.2021.1874779
Articles are hosted by Taylor and Francis Online.
A one-dimensional (1-D) thermal stratification (TS) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. This paper performs uncertainty quantification (UQ) of the 1-D TS model to evaluate its performance by considering the aleatoric uncertainties that existed in the model parameters and to identify the plausible sources of the epistemic uncertainties. The Latin hypercube sampling–Monte Carlo method (LHS-MC), which is elaborated with an example in this paper to facilitate its understanding and implementation, is used for the UQ process. The advantages of LHS-MC, including both better stability and better accuracy than the conventional random sampling–Monte Carlo method with fewer realizations, are demonstrated in this paper.
In total, 648 temperature measurements acquired from nine experimental transients performed in a university-scale Thermal Stratification Experimental Facility are used to evaluate the performance of the computational 1-D TS model. The UQ result shows that 77.5% of the experimental data can be predicted by the 1-D TS model within uncertainty ranges, which indicates the good performance of the computational model when the aleatoric uncertainties are correctly captured. The rest 22.5% of the experimental data are found located outside of the uncertainty ranges, which reveals the existence of the epistemic uncertainties caused by the lack of understanding of the TS phenomenon and defects in the 1-D model. The simple jet model currently employed by the 1-D TS model is thought to be one of the attributors to these defects.