ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
George M. Jacobsen, Hangbok Choi, James A. Turso, Amanda M. Johnsen, Andrew J. Bascom, Xialu Wei, Eugene A. Olevsky
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 27-36
Technical Paper | doi.org/10.1080/00295450.2021.1877504
Articles are hosted by Taylor and Francis Online.
Zirconium silicide (Zr3Si2) is a heavy reflector material particularly effective for application to a Gas-cooled Fast Reactor (GFR) such as the General Atomics Energy Multiplier Module (EM2) and Fast Modular Reactor (FMR). In this work, the manufacturability of a high-density Zr3Si2 compound, in the Zr3Si2 phase, was investigated using hot-pressing and spark-plasma-sintering methods. The microstructure, composition, and thermal properties of the resulting hot-pressed material were measured, resulting in a 96% relative density and a 96% phase pure material. The thermal properties were consistent with those necessary for use under GFR operating conditions. The structural and dimensional stability of the material was also measured before and after neutron irradiation up to 1017 n/cm2 in the research reactor, resulting in an average linear dimensional change of <0.12%. The preliminary irradiation tests also confirmed the micromechanical stability of the Zr3Si2 phase, with no evidence of microcracking after irradiation. The results of the irradiation tests verify the fabrication method of Zr3Si2 for nuclear applications, but further irradiation tests under high-temperature and high-irradiation conditions will be required to qualify the material for GFR applications.