ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
R. C. Harvill, J. W. Lane, T. L. George
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 1-26
Technical Paper | doi.org/10.1080/00295450.2020.1870371
Articles are hosted by Taylor and Francis Online.
Natural circulation, mixing, and stratification are important phenomena for the design and safety analysis of many advanced reactor designs with passive safety features as well as large open regions, such as pool reactor designs, spent fuel pools, and containments. Various modeling methods ranging from zero-dimensional (0-D) lumped volumes (or perfect mixing) to full three-dimensional (3-D) computational fluid dynamics (CFD) have been used. Historically, 0-D lumped volume approaches, combined with other modeling methods and assumptions, have been applied to perform so-called conservative analyses, but with the advancement of computational resources and best-estimate-plus-uncertainty methods, it is very desirable to have advanced, multidimensional modeling and simulation capabilities to improve the accuracy of reactor safety analyses, reduce modeling uncertainties, and eliminate the modeling distortions that can occur when simultaneously applying conservatisms. In the past decade there have been large investments in the pursuit of new, higher-fidelity modeling and simulation tools. However, GOTHICTM, which has been developed and maintained by Zachry Nuclear Engineering (formerly Numerical Applications, Inc.) since the mid-1980s, already provides these capabilities. GOTHIC is an industry-trusted, computationally efficient, coarse-grid multiphase CFD tool that also includes the important attributes of traditional system-level modeling tools, such as component-level models, control system capabilities, and neutron point kinetics models.
GOTHIC applies a domain decomposition approach, allowing various levels of fidelity from 0-D to full 3-D to be applied in a single model, giving the user the ability to focus computational resources in the regions of interest while still capturing the integrated system response and important feedback effects. The result is a general-purpose, multiphysics engineering design and analysis tool that can be used for both light water reactor (LWR) and non-LWR designs. This paper provides an overview of 3-D finite volume modeling in GOTHIC, including the governing equations, turbulence model, and solution methods. Additionally, a few of the verification and validation tests from GOTHIC’s full test suite are presented to demonstrate fundamental capabilities, including laminar flow in a channel of parallel plates, square and rectangular cavity natural convection, natural convection through vertical and horizontal openings, and natural convection associated with a heated horizontal cylinder in a rectangular cavity. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the multidimensional model can perform very well for a wide range of applications.