ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Roy S. Baty, Scott D. Ramsey
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S335-S351
Technical Paper | doi.org/10.1080/00295450.2021.1922263
Articles are hosted by Taylor and Francis Online.
This paper presents a brief historical review of G. I. Taylor’s solution of the point blast wave problem which was applied to the Trinity test of the first atomic bomb. Lie group symmetry techniques (also referred to throughout this paper as geometric techniques) are used to derive Taylor’s famous two-fifths law that relates the position of a blast wave to the time after the explosion and the total energy released. The theory of exterior differential systems is combined with the method of characteristics to demonstrate that the solution of the blast wave problem is directly related to the basic relationships that exist between the symmetry (or geometry) and the physics of wave propagation through the equations of motion. The point blast wave model is cast in terms of two exterior differential systems, and both systems are shown to be integrable with local solutions for the velocity, pressure, and density along curves in space and time behind the blast wave. This work is dedicated to the memory of Professor Roy Axford, who introduced many of his students to the topic of symmetry analysis of differential equations.