ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Roy S. Baty, Scott D. Ramsey
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S335-S351
Technical Paper | doi.org/10.1080/00295450.2021.1922263
Articles are hosted by Taylor and Francis Online.
This paper presents a brief historical review of G. I. Taylor’s solution of the point blast wave problem which was applied to the Trinity test of the first atomic bomb. Lie group symmetry techniques (also referred to throughout this paper as geometric techniques) are used to derive Taylor’s famous two-fifths law that relates the position of a blast wave to the time after the explosion and the total energy released. The theory of exterior differential systems is combined with the method of characteristics to demonstrate that the solution of the blast wave problem is directly related to the basic relationships that exist between the symmetry (or geometry) and the physics of wave propagation through the equations of motion. The point blast wave model is cast in terms of two exterior differential systems, and both systems are shown to be integrable with local solutions for the velocity, pressure, and density along curves in space and time behind the blast wave. This work is dedicated to the memory of Professor Roy Axford, who introduced many of his students to the topic of symmetry analysis of differential equations.