ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
Eric N. Brown, Dan L. Borovina
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S204-S221
Critical Review | doi.org/10.1080/00295450.2021.1913954
Articles are hosted by Taylor and Francis Online.
This paper is set during the 1944 and 1945 final push to complete Project Y—the Manhattan Project at Los Alamos—and focuses primarily on overcoming the challenge of creating and demonstrating a successful convergent explosive implosion to turn a subcritical quantity of plutonium into a critical mass. The critical mass would then efficiently yield kilotons of trinitrotoluene (TNT)-equivalent energy in about a microsecond, demonstrating the implosion atomic bomb concept. This work culminated in the Trinity atomic test near Alamogordo, New Mexico, on July 16, 1945. This implosion effect demarcated the approach to explosive science and technology that the Los Alamos National Laboratory has followed ever since, including development of high-explosive synthesis and formulation, small and large test and diagnostic facilities, shock dynamics theory, high-explosive system design engineering, and three-dimensional implosion modeling and simulation using some of the fastest computers in the world. This work also ushered in new generations of interdisciplinary scientists contributing to the field of explosives and a period of broader application of precision high explosives in conventional munitions, demolition, mining and oil exploration, and space travel.