ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Site acquired for GLE laser enrichment plant
Global Laser Enrichment (GLE) has acquired a 665-acre parcel of land for its planned Paducah Laser Enrichment Facility (PLEF) in Kentucky.
Avneet Sood, R. Arthur Forster, B. J. Archer, R. C. Little
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S100-S133
Critical Review | doi.org/10.1080/00295450.2021.1956255
Articles are hosted by Taylor and Francis Online.
The history and advances of neutronics calculations at Los Alamos during the Manhattan Project through the present are reviewed. Substantial improvements to neutron diffusion methods and the invention of both the Monte Carlo neutron transport methods in 1947 and deterministic discrete ordinates Sn in 1953 were all made at Los Alamos just after the Manhattan Project. We briefly summarize early simpler and more approximate neutronics methods and then describe the need to better predict neutronics behavior through consideration of theoretical equations, models and algorithms, experimental measurements, and available computing capabilities and their limitations. This paper briefly covers key advances in deterministic methods during the Manhattan Project. These capabilities, coupled with increasing postwar defense needs and the invention of electronic computing with the Electronic Numeric Integrator and Computer, known as ENIAC, and the Mathematical Analyzer Numerical Integrator and Automatic Computer Model, known as MANIAC, led to the creation of Monte Carlo and deterministic discrete ordinates neutronics transport methods. We note the important role that the scientific comradery between the Los Alamos scientists played in the process. This paper briefly covers the early methods, algorithms, computers, and electronic and women pioneers that enabled Monte Carlo to spread to all areas of science. We focus heavily on these early developments and the subsequent creation of the MCNP® code, advances in its associated nuclear data, and its applications to problems of national defense at Los Alamos.