ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Avneet Sood, R. Arthur Forster, B. J. Archer, R. C. Little
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S100-S133
Critical Review | doi.org/10.1080/00295450.2021.1956255
Articles are hosted by Taylor and Francis Online.
The history and advances of neutronics calculations at Los Alamos during the Manhattan Project through the present are reviewed. Substantial improvements to neutron diffusion methods and the invention of both the Monte Carlo neutron transport methods in 1947 and deterministic discrete ordinates Sn in 1953 were all made at Los Alamos just after the Manhattan Project. We briefly summarize early simpler and more approximate neutronics methods and then describe the need to better predict neutronics behavior through consideration of theoretical equations, models and algorithms, experimental measurements, and available computing capabilities and their limitations. This paper briefly covers key advances in deterministic methods during the Manhattan Project. These capabilities, coupled with increasing postwar defense needs and the invention of electronic computing with the Electronic Numeric Integrator and Computer, known as ENIAC, and the Mathematical Analyzer Numerical Integrator and Automatic Computer Model, known as MANIAC, led to the creation of Monte Carlo and deterministic discrete ordinates neutronics transport methods. We note the important role that the scientific comradery between the Los Alamos scientists played in the process. This paper briefly covers the early methods, algorithms, computers, and electronic and women pioneers that enabled Monte Carlo to spread to all areas of science. We focus heavily on these early developments and the subsequent creation of the MCNP® code, advances in its associated nuclear data, and its applications to problems of national defense at Los Alamos.