ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Japanese fuel disposition mission starts at Savannah River Site
Employees at the H Canyon Chemical Separations Facility at the Department of Energy’s Savannah River Site in South Carolina recently began the dissolution of nuclear material from a Japanese research reactor, leading to its safe disposal.
Abdalla Abou-Jaoude, Samuel A. Walker, Sandesh Bhaskar, Wei Ji
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1821-1841
Technical Paper | doi.org/10.1080/00295450.2020.1843954
Articles are hosted by Taylor and Francis Online.
Molten-salt reactors will likely require some level of irradiation testing as part of their licensing basis. An ideal experiment would consider the integrated effect of neutron flux and fission product generation in addition to circulating flow conditions. The feasibility of a natural-circulation irradiation salt loop in the Advanced Test Reactor (ATR) is assessed here. The flow is induced by the innovative combination of gas gaps and fin gaps along the capsule wall to fine-tune radial heat conductance, and therefore drive an axial temperature gradient across the experiment height. Following multiple design optimizations, a promising configuration has been identified. The 45-kW experiment would generate a 0.15 m/s flow velocity with 6 kg of fuel-bearing salt. This demonstrates the possibility of generating appreciable flow rates within manageable experimental conditions (e.g., total size and heat generation). An initial assessment of species mass tracking inside the experiment was also performed to gain an understanding of radionuclide behavior within the system. Results showed that significant quantities of Xe can be extracted in the off-gas (1.7 kCi) for an 8% bubble removal efficiency rate. These results highlight the potential value of such experiments. Further work will involve detailed engineering drawings and analyses of the loop, as well as more computationally expensive modeling of species mass tracking.