ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Ian Wall—ANS member since 1964
Ian Wall early in his career . . .
I graduated with a degree in mechanical engineering from Imperial College, London, in 1958. Nuclear power was viewed favorably at the time, so I took a 1-year course on the subject. I was then offered fellowships at Cambridge University and the Massachusetts Institute of Technology and thought the latter would be more interesting, so I moved to Cambridge, Mass., to study nuclear engineering. After completing my doctorate in 1964, I joined the American Nuclear Society and took a job with General Electric, then in San Jose, Calif.
In 1967, GE assigned me to explore the use of probability in reactor safety. At that time, the prevailing opinion was that the probability of a severe accident was infinitesimally small and the consequences would be catastrophic.
Jung Hwan Kim, Chul Min Kim, Yong Hee Lee, Man-Sung Yim
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1753-1767
Regular Technical Paper | doi.org/10.1080/00295450.2020.1837583
Articles are hosted by Taylor and Francis Online.
The safe operation of a nuclear power plant (NPP) can be guaranteed through the team effort of operators in the main control room (MCR). Among the various features, peer checks, concurrent verification, independent verification, and communication reconfirmation are major contributors to effective operations in the MCR. In the digital MCR environment of advanced NPPs, there are potential emerging issues of concern related to these contributors resulting from the use of PC-soft controls for reactor operations. The objective of this study is to investigate the development of quantitative indicators for estimating the implicit intentions of reactor operators as a way to mitigate such concerns. The proposed quantitative indicators support peer checks and concurrent/independent verifications for diagnosing and preventing human errors through communication enhancement in a digital technology-based MCR. A machine learning–based algorithm was used to classify two implicit intentions of agreement and disagreement. The classification was based on electroencephalography data measured from human subjects while they performed mock operational tasks using soft controls. The mock operational tasks were based on using a Windows-based nuclear plant performance analyzer (Win-NPA). Statistical analysis was performed on the measured data to identify significant differences between the agreement and disagreement judgments by the operators. An average classification accuracy of 72% was achieved by using a support vector machine classifier for the Win-NPA task with a low number of features across the various Brodmann areas. The methodology proposed in this study may also serve to enhance communications in conventional MCRs for human error minimization.