ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Samyog Shrestha, Efe G. Kurt, Kyungtae Kim, Arun Prakash, Ayhan Irfanoglu
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1639-1663
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2021.1920798
Articles are hosted by Taylor and Francis Online.
Three-dimensional (3-D) nonlinear site response analyses are conducted using finite element models of actual soil profiles from ten nuclear power plant (NPP) sites in the United States to investigate the effects of soil properties and input motions on site amplification. The modeling approach developed in this study combines several novel elements, such as 3-D analysis (including vertical motions), nonlinear inelastic behavior of soil (strain-dependent shear modulus reduction and hysteretic damping), formulation of nonreflecting boundary conditions at the base, and generation of realistic outcrop ground motions for specific sites. All these elements of the modeling approach are first validated using actual data from five earthquakes at three downhole array stations recorded in the Kiban-Kyoshin network (KiK-net), Japan. The same approach is then used to develop site models of ten NPP sites in the United States and corresponding ground motions that are spectrally matched to the site hazard spectra. Eight sets of three-component input motions are used in the study and are categorized on the basis of presence or absence of a near-field pulse in the seed ground motions used for spectral matching. It is found that all sites retain a definite site amplification function regardless of the input motion, provided that the seed motion is spectrally matched to the site hazard spectra. The magnitude of site amplification and frequencies at which they occur depend upon soil properties, particularly the shear wave velocity profile and the constitutive relationship (strain-dependent shear modulus reduction and hysteretic damping) of soil. Amplification of spectral acceleration in the vertical direction (up-down motion) is found to be just as much as, if not more than, the amplification in the horizontal direction. Peak shear strain is found to be about 20% larger for near-field motions compared to far-field motions whereas maximum horizontal site amplification for far-field motions is found to be consistently larger than that of near-field motions, even though the differences between the two remain within the scatter resulting from individual ground motions.