ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
IAEA, PNNL test new uranium enrichment monitor
A uranium enrichment monitor developed by a team at Pacific Northwest National Laboratory will soon be undergoing testing for nonproliferation applications at the International Atomic Energy Agency Centre of Excellence for Safeguards and Non-Proliferation in the United Kingdom. A recent PNNL news article describes how the research team, led by nuclear physicist James Ely, who works within the lab’s National Security Directorate, developed the UF6 gas enrichment sensor (UGES) prototype for treaty verification and other purposes.
B. P. Bromley, Z. Cheng, A. Nava Dominguez, A. V. Colton
Nuclear Technology | Volume 207 | Number 10 | October 2021 | Pages 1511-1537
Technical Paper | doi.org/10.1080/00295450.2020.1827658
Articles are hosted by Taylor and Francis Online.
This paper reports the results of subchannel thermal-hydraulic studies (using the ASSERT-PV code) of the effects of variations and uncertainties in operating/boundary conditions and geometry on the predictions of pressure drop, dryout power, and dryout location for two types of advanced, nonconventional fuels in a pressure tube heavy water reactor (PT-HWR) fuel channel with 12 fuel bundles. The fuel bundles tested include a 37-element fuel bundle made with SEUO2 (1.2 wt% 235U/U), with a central fuel element made of ThO2, and 35-element fuel bundle made with (LEU,Th)O2, using 5 wt% 235U/U low-enriched uranium (LEU), 50 wt% LEUO2, and 50 wt% ThO2. Results indicate that for a range of flow conditions, the dryout power for the thorium-based 35-element fuel bundle is 10% to 26% higher than that for the uranium-based 37-element fuel bundle. Variation/uncertainty in the pressure tube diameter has the most significant impact on the pressure drop, dryout power, and dryout location. Results from these studies may have implications for the operations of PT-HWRs with advanced fuels, and further modifications may be desirable to further enhance thermal-hydraulic margins.