ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
B. P. Bromley, A. V. Colton
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1193-1215
Technical Paper | doi.org/10.1080/00295450.2020.1853466
Articles are hosted by Taylor and Francis Online.
Lattice physics and core physics studies have been carried out to investigate the reactor physics feasibility of destroying americium (Am) and curium (Cm) using special target fuel bundles in blanket fuel channels in a heterogeneous seed-blanket pressure tube heavy water reactor (PT-HWR) core fueled primarily with natural uranium. Results indicate that it should be feasible to achieve net-zero production of Am in a single PT-HWR core using 10 to 16 dedicated blanket channels containing Am-based target bundles while only one dedicated blanket channel would be required for achieving net-zero production of Cm. While the use of target blanket fuel bundles with fuel elements made of Am or Cm mixed with thorium (Th) in oxide form ((Am,Th)O2, (Cm,Th)O2) is expected to be suitable for transmutation purposes, the use of fuel elements made of pure americium oxide, especially those in the form of AmO1.55, may not be suitable for transmutation purposes because of potential issues with fuel melting under high-power operations or postulated accident scenarios. The potential to achieve net-zero production of Am and Cm in a single thermal-spectrum reactor, such as a PT-HWR, could help eliminate the need to build and qualify a deep geological repository (DGR) capable of storing minor actinides for a long time (>1 million years). At the very least, the size and/or number of DGRs required for storing radioactive waste could be reduced significantly. Thus, destroying Am and Cm in PT-HWRs could be regarded as a viable solution to the perceived problem of nuclear waste and may help improve public acceptance of the use of nuclear energy. In addition, it may be possible to apply a similar approach for destroying MAs in other Generation III+ (Gen-III+)/Generation IV (Gen-IV)/small modular reactor (SMR) technologies.