ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
B. P. Bromley, A. V. Colton
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1182-1192
Technical Paper | doi.org/10.1080/00295450.2020.1812318
Articles are hosted by Taylor and Francis Online.
Lattice physics and core physics studies have been carried out to investigate the feasibility of destroying long-lived fission products (LLFPs) using special target fuel bundles in blanket fuel channels in a seed-blanket core in a pressure tube heavy water reactor (PT-HWR) fueled primarily with natural uranium. Results indicate that it should be feasible to achieve net zero production of LLFPs such as 79Se and 129I using one to two dedicated blanket channels containing LLFP target bundles. With 60 blanket channels, the net production rate of 99Tc or 126Sn could be reduced by 75% or more. Further design modifications may be able to achieve net zero production for most LLFPs, with the exception of 135Cs, which would require isotopic separation.