ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Arvind Sundaram, Hany Abdel-Khalik
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1163-1181
Technical Paper | doi.org/10.1080/00295450.2020.1812349
Articles are hosted by Taylor and Francis Online.
Can predictive models develop cognizance or awareness of how they have been used? Can models detect if they are being manipulated or executed in nonauthorized manners? Can a software track information propagation through its subroutines to improve execution efficiency? Can this be achieved in a covert manner, i.e., avoiding the use of additional variables, additional lines of code, and conventional logging files, and instead rely directly on the physics being simulated to develop the required cognizance? Achieving these goals under the looming threat of insiders is considered an open challenging problem. This paper introduces a new modeling paradigm to covertly develop cognizance that is of critical value when predictive software is used in both adversarial and nonadversarial settings. Given the wide range of applications possible with this new modeling paradigm, the paper will focus on introducing the mathematical theory and limit the initial demonstration to a physics-based model of a nuclear reactor. This model describes a representative industrial control system of a nuclear reactor model containing two coupled subsystems: a heat-producing core and a steam generator. The goal is to demonstrate how each subsystem physics model can remain cognizant of the state of the subsystem. The proposed methodology will provide communication solutions for future reactor technologies to enable advanced reactor control and remote reactor operations.