ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Christopher Matthews, Vincent Laboure, Mark DeHart, Joshua Hansel, David Andrs, Yaqi Wang, Javier Ortensi, Richard C. Martineau
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1142-1162
Technical Paper | doi.org/10.1080/00295450.2021.1906474
Articles are hosted by Taylor and Francis Online.
DireWolf is a multiphysics software driver application designed to simulate heat pipe–cooled nuclear microreactors. Developed under the U.S. Department of Energy, Office of Nuclear Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the DireWolf software application’s objective is to provide the nuclear community with a design and safety analysis simulation capability. Based upon the NEAMS program Multiphysics Object-Oriented Simulation Environment (MOOSE) computational framework, DireWolf tightly couples nuclear microreactor physics, reactor physics, radiation transport, nuclear fuel performance, heat pipe thermal hydraulics, power generation, and structural mechanics to resolve the interdependent nonlinearities. DireWolf is capable of simulating both steady and transient normal reactor operation and several postulated failure scenarios. We will present the fundamental physics of heat pipe–cooled nuclear microreactors and the MOOSE-based software employed in DireWolf. Both steady and transient results for coupled reactor physics, radiation transport, and nuclear fuel performance are demonstrated.