ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Elia Merzari, Haomin Yuan, Misun Min, Dillon Shaver, Ronald Rahaman, Patrick Shriwise, Paul Romano, Alberto Talamo, Yu-Hsiang Lan, Derek Gaston, Richard Martineau, Paul Fischer, Yassin Hassan
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1118-1141
Technical Paper | doi.org/10.1080/00295450.2020.1824471
Articles are hosted by Taylor and Francis Online.
This paper demonstrates a multiphysics solver for pebble-bed reactors, in particular, for Berkeley’s pebble-bed -fluoride-salt-cooled high-temperature reactor (PB-FHR) (Mark I design). The FHR is a class of advanced nuclear reactors that combines the robust coated particle fuel form from high-temperature gas-cooled reactors, the direct reactor auxiliary cooling system passive decay removal of liquid-metal fast reactors, and the transparent, high-volumetric heat capacitance liquid-fluoride salt working fluids (e.g., FLiBe) from molten salt reactors. This fuel and coolant combination enables FHRs to operate in a high-temperature, low-pressure design space that has beneficial safety and economic implications. The PB-FHR relies on a pebble-bed approach, and pebble-bed reactors are, in a sense, the poster child for multiscale analysis.
Relying heavily on the MultiApp capability of the Multiphysics Object-Oriented Simulation Environment (MOOSE), we have developed Cardinal, a new platform for lower-length-scale simulation of pebble-bed cores. The lower-length-scale simulator comprises three physics: neutronics (OpenMC), thermal fluids (Nek5000/NekRS), and fuel performance (BISON). Cardinal tightly couples all three physics and leverages advances in MOOSE, such as the MultiApp system and the concept of MOOSE-wrapped applications. Moreover, Cardinal can utilize graphics processing units for accelerating solutions. In this paper, we discuss the development of Cardinal and the verification and validation and demonstration simulations.