ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Elia Merzari, Haomin Yuan, Misun Min, Dillon Shaver, Ronald Rahaman, Patrick Shriwise, Paul Romano, Alberto Talamo, Yu-Hsiang Lan, Derek Gaston, Richard Martineau, Paul Fischer, Yassin Hassan
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1118-1141
Technical Paper | doi.org/10.1080/00295450.2020.1824471
Articles are hosted by Taylor and Francis Online.
This paper demonstrates a multiphysics solver for pebble-bed reactors, in particular, for Berkeley’s pebble-bed -fluoride-salt-cooled high-temperature reactor (PB-FHR) (Mark I design). The FHR is a class of advanced nuclear reactors that combines the robust coated particle fuel form from high-temperature gas-cooled reactors, the direct reactor auxiliary cooling system passive decay removal of liquid-metal fast reactors, and the transparent, high-volumetric heat capacitance liquid-fluoride salt working fluids (e.g., FLiBe) from molten salt reactors. This fuel and coolant combination enables FHRs to operate in a high-temperature, low-pressure design space that has beneficial safety and economic implications. The PB-FHR relies on a pebble-bed approach, and pebble-bed reactors are, in a sense, the poster child for multiscale analysis.
Relying heavily on the MultiApp capability of the Multiphysics Object-Oriented Simulation Environment (MOOSE), we have developed Cardinal, a new platform for lower-length-scale simulation of pebble-bed cores. The lower-length-scale simulator comprises three physics: neutronics (OpenMC), thermal fluids (Nek5000/NekRS), and fuel performance (BISON). Cardinal tightly couples all three physics and leverages advances in MOOSE, such as the MultiApp system and the concept of MOOSE-wrapped applications. Moreover, Cardinal can utilize graphics processing units for accelerating solutions. In this paper, we discuss the development of Cardinal and the verification and validation and demonstration simulations.