ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1015-1046
Technical Paper | doi.org/10.1080/00295450.2020.1825307
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of Pronghorn, a multiscale thermal-hydraulic (T/H) application developed by Idaho National Laboratory and the University of California, Berkeley. Pronghorn, built on the open-source finite element Multiphysics Object-Oriented Simulation Environment (MOOSE), leverages state-of-the-art physical models, numerical methods, and nonlinear solvers to deliver fast-running advanced reactor T/H simulation capabilities within a modern software engineering environment. This work summarizes the physical models, multiphysics and multiscale coupling, and numerical discretization in Pronghorn with emphasis on our initial target application to pebble bed reactors (PBRs). A diverse set of applications are shown to depressurized natural circulation in the SANA experiments, forced convection in the Pebble Bed Modular Reactor, three-dimensional (3-D)/one-dimensional coupling of Pronghorn and RELAP-7 systems T/H for loop analysis in the High Temperature Reactor Power Module, and forced convection in the Mark-1 Pebble Bed Fluoride-Salt-Cooled High-Temperature Reactor. A multiphysics coupling of Pronghorn, RELAP-7, and Griffin deterministic neutronics for a gas-cooled PBR demonstrates the capability of the MOOSE framework for reactor design calculations. These applications highlight the verification and validation underlying Pronghorn’s software development while emphasizing features that improve upon capabilities offered by legacy tools in areas such as 3-D unstructured meshing, physics modeling, and multiphysics coupling.