ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1015-1046
Technical Paper | doi.org/10.1080/00295450.2020.1825307
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of Pronghorn, a multiscale thermal-hydraulic (T/H) application developed by Idaho National Laboratory and the University of California, Berkeley. Pronghorn, built on the open-source finite element Multiphysics Object-Oriented Simulation Environment (MOOSE), leverages state-of-the-art physical models, numerical methods, and nonlinear solvers to deliver fast-running advanced reactor T/H simulation capabilities within a modern software engineering environment. This work summarizes the physical models, multiphysics and multiscale coupling, and numerical discretization in Pronghorn with emphasis on our initial target application to pebble bed reactors (PBRs). A diverse set of applications are shown to depressurized natural circulation in the SANA experiments, forced convection in the Pebble Bed Modular Reactor, three-dimensional (3-D)/one-dimensional coupling of Pronghorn and RELAP-7 systems T/H for loop analysis in the High Temperature Reactor Power Module, and forced convection in the Mark-1 Pebble Bed Fluoride-Salt-Cooled High-Temperature Reactor. A multiphysics coupling of Pronghorn, RELAP-7, and Griffin deterministic neutronics for a gas-cooled PBR demonstrates the capability of the MOOSE framework for reactor design calculations. These applications highlight the verification and validation underlying Pronghorn’s software development while emphasizing features that improve upon capabilities offered by legacy tools in areas such as 3-D unstructured meshing, physics modeling, and multiphysics coupling.