ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
January 2024
Latest News
Eisenhower’s “Atoms for Peace” at 70
Seventy years ago to the day, President Dwight D. Eisenhower gave his historic address to the United Nations General Assembly in New York City. (See December 2023 Nuclear News's “Leaders” column to read the reflections of Kathryn Huff, the Department of Energy’s assistant secretary for nuclear energy, on the speech’s anniversary.)
William C. Tucker, Piyas Chowdhury, Lauren J. Abbott, Justin B. Haskins
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 825-835
Technical Paper | doi.org/10.1080/00295450.2020.1850162
Articles are hosted by Taylor and Francis Online.
The development and qualification of nuclear thermal propulsion (NTP) fuel element technologies would be aided by an in-depth model of material response and failure modes at operating conditions. Integrated computational materials engineering techniques have the potential to provide such a model, as demonstrated here through three case studies focused on a tungsten–uranium mononitride (UN) cermet fuel. The first case focuses on the erosion of tungsten (also named wolfram), a nominal coating/cladding and fuel element matrix material, in hot hydrogen. Ab initio techniques are used to calculate erosion rates and thermal expansion at NTP operating conditions. The second focuses on the stability of UN fuels at high temperature and in the presence of hydrogen. Phase diagram techniques augmented with ab initio thermodynamic data reveal potential instabilities and decomposition pathways at high hydrogen concentrations. The third focuses on using microstructure information to predict high-temperature mechanical response and failure of tungsten. Combined finite element and discrete dislocation dynamics techniques provide mechanical properties in agreement with experimental methods. The integration of these techniques for an all-encompassing material model is discussed.