ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
William C. Tucker, Piyas Chowdhury, Lauren J. Abbott, Justin B. Haskins
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 825-835
Technical Paper | doi.org/10.1080/00295450.2020.1850162
Articles are hosted by Taylor and Francis Online.
The development and qualification of nuclear thermal propulsion (NTP) fuel element technologies would be aided by an in-depth model of material response and failure modes at operating conditions. Integrated computational materials engineering techniques have the potential to provide such a model, as demonstrated here through three case studies focused on a tungsten–uranium mononitride (UN) cermet fuel. The first case focuses on the erosion of tungsten (also named wolfram), a nominal coating/cladding and fuel element matrix material, in hot hydrogen. Ab initio techniques are used to calculate erosion rates and thermal expansion at NTP operating conditions. The second focuses on the stability of UN fuels at high temperature and in the presence of hydrogen. Phase diagram techniques augmented with ab initio thermodynamic data reveal potential instabilities and decomposition pathways at high hydrogen concentrations. The third focuses on using microstructure information to predict high-temperature mechanical response and failure of tungsten. Combined finite element and discrete dislocation dynamics techniques provide mechanical properties in agreement with experimental methods. The integration of these techniques for an all-encompassing material model is discussed.