ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Alicia M. Raftery, Rachel L. Seibert, Daniel R. Brown, Michael P. Trammell, Andrew T. Nelson, Kurt A. Terrani
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 815-824
Technical Paper | doi.org/10.1080/00295450.2020.1823187
Articles are hosted by Taylor and Francis Online.
Ceramic-metallic nuclear fuels are a candidate fuel for nuclear thermal propulsion systems due to their high heat transport properties, which are necessary in very high-temperature environments. The conventional fabrication of uranium nitride–molybdenum fuel has been thoroughly studied in the past, but modern manufacturing techniques have presented a unique opportunity for further development within this field. This work demonstrates the use of advanced manufacturing techniques to produce nuclear fuel pellets composed of uranium nitride microspheres encased in a molybdenum matrix. Binder jetting is used to print molybdenum disks that are filled with uranium nitride microspheres and afterward sintered using spark plasma sintering. Two fuel pellets were fabricated to demonstrate the methodology and to provide a baseline analysis of the effects of temperature and pressure processing conditions. Characterization of the sintered fuel pellets includes detailed microstructural analysis and thermal conductivity measurements.