ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Neutron Vision at Los Alamos: Exploring the Frontiers of Nuclear Materials Science
In materials science, understanding the unseen—how materials behave internally under real-world conditions—has always been key to developing new materials and accelerating innovative technologies to market. Moreover, the tools that allow us to see into this invisible world of materials have often been game-changers. Among these, neutron imaging stands out as a uniquely powerful method for investigating the internal structure and behavior of materials without having to alter or destroy the sample. By harnessing the unique properties of neutrons, researchers can uncover the hidden behavior of materials, providing insights essential for advancing nuclear materials and technologies.
Richard M. Ambrosi, Daniel P. Kramer, Emily Jane Watkinson, Ramy Mesalam, Alessandra Barco
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 773-781
Technical Paper | doi.org/10.1080/00295450.2021.1888616
Articles are hosted by Taylor and Francis Online.
Radioisotope power systems (RPSs) have transformed our ability to explore the solar system. RPSs have been in existence for almost seven decades. Most missions have utilized 238Pu as the radioisotope of choice to generate electrical power and to produce heat for the operation and thermal management of spacecraft systems. In Europe, for the past decade 241Am has been selected for RPS research programs. This paper hypothesizes that the inclusion of small quantities of relatively short-lived radioisotopes such as 232U and 244Cm, particularly when dealing with long-lived radioisotope 241Am, could have beneficial implications for future RPS designs. This paper focuses on the thermal output implications and impact on system-level design. The authors recognize that the selection of any new or modified radioisotope heat source material will require extensive research on fuel form stability, the radiological impact, cost of production, containment, and launch safety considerations.