ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Patrick R. McClure, David I. Poston, Steven D. Clement, Louis Restrepo, Robert Miller, Manny Negrete
Nuclear Technology | Volume 206 | Number 1 | June 2020 | Pages 43-55
Technical Paper – Kilopower/KRUSTY special issue | doi.org/10.1080/00295450.2020.1722544
Articles are hosted by Taylor and Francis Online.
The centerpiece of the Kilopower Project, i.e., the Kilowatt Reactor Using Stirling TechnologY (KRUSTY) test, consists of the development and testing of a ground technology demonstration of a small fission power system based on a 1-kW(electric) space science power requirement. The KRUSTY test was authorized by the U.S. Department of Energy’s (DOE’s) National Nuclear Security Administration Nevada Field Office. Authorization was obtained by adding an amendment to the existing regulatory documents for the National Criticality Experiments Research Center to cover the KRUSTY experiment. This amendment was reviewed and approved by the DOE. The most important safety question for the experiment was the addition of over 2 $ of excess reactivity to the reactor system. This amount of excess reactivity meant that the analyst could postulate accidents where the reactor went prompt critical, leading to physical shock or melting of the fuel. This paper analyzes these accidents using computer calculations and examines the controls used to mitigate them. The estimation of the impacts both on accident progression and consequences of reactivity insertion events was a significant part of obtaining approval for the KRUSTY experiment. The regulatory approval of KRUSTY was one of the first to be obtained for a completely new reactor concept in many decades.