ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Marc A. Gibson, David I. Poston, Patrick R. McClure, James L. Sanzi, Thomas J. Godfroy, Maxwell H. Briggs, Scott D. Wilson, Nicholas A. Schifer, Max F. Chaiken, Nissim Lugasy
Nuclear Technology | Volume 206 | Number 1 | June 2020 | Pages 31-42
Technical Paper – Kilopower/KRUSTY special issue | doi.org/10.1080/00295450.2019.1709364
Articles are hosted by Taylor and Francis Online.
The Kilopower reactors have been designed to provide a steady-state thermal power range between 4 and 40 kW and to convert the heat generated to an electrical output of 1 to 10 kW(electric), providing an overall system efficiency of 25%. This range of thermal and electrical power has been derived from two basic designs: the small 1-kW(electric) design and the larger 10- kW(electric) electric design intended to support science and human exploration missions for surface and in-space power. The Kilowatt Reactor Using Stirling TechnologY (KRUSTY) experiment was built using the 1-kW(electric) Kilopower design to make the test affordable by using existing infrastructure and to complete it in a 3-year timeframe. The data from the smaller, lower-mass system could be extended to the larger 10-kW(electric) system, knowing that the materials and neutronic design are similar. Each of these designs use the same fuel, heat transport systems, and power conversion systems at the appropriate scale to produce the desired electrical output power for mission use. The heat transport system uses multiple heat pipes that operate passively and do not require any electrical pumps or other parasitic loads to cool the reactor core. This type of reactor cooling provides several layers of redundancy and makes it ideal for coupling a self-regulating reactor to a variable-output power conversion system. The power converters accept the reactor heat that has been delivered by the heat pipes and create the needed electrical power through their thermodynamic Stirling cycle and linear alternator. This paper provides details about the sodium heat pipes used in the experiment, the Stirling power converters that create the electricity, and the overall power system that make up the 1-kW(electric) Kilopower reactor.