ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Show support for a Lego nuclear power plant
A creative fan of Lego—and nuclear power—has designed a nuclear power plant out of the famous building blocks and has submitted the idea to the Lego Group for possible production—but first, the idea needs the support of the public.
Hsoung-Wei Chou, Pin-Chiun Huang, Yuh-Ming Ferng
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 735-749
Technical Paper | doi.org/10.1080/00295450.2020.1796091
Articles are hosted by Taylor and Francis Online.
The structural integrity of a reactor pressure vessel (RPV) is a crucial issue for an operating nuclear power plant, especially in the beltline region, which suffers the highest neutron irradiation. Owing to its capability of considering parameters based on statistical distributions and provision of objective risk-informed results, the probabilistic fracture mechanics (PFM) method is widely used in evaluating the structural integrity of RPVs. However, the flaw characteristics used for PFM analysis are mainly derived from particular vessel inspection information such as from the Pressure Vessel Research User Facility and Shoreham vessels, which may not be able to truly represent the vessel-specific condition of an analyzed RPV. In this work, the Bayesian inference, which combines prior flaw data with new inspection results as well as uncertainties, is used to develop posterior vessel-specific flaw distributions. Then, the updated flaw model is used for PFM analysis to investigate the effects on the fracture probability assessment of RPVs subjected to pressurized thermal shocks (PTSs). Considering the updated flaws based on the inspection data, the PFM analysis result could be more realistic to predict the fracture risks of RPVs during operation.