ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Peter Yarsky
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 653-664
Technical Paper | doi.org/10.1080/00295450.2020.1800308
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission (NRC) staff often performs confirmatory analysis to support regulatory decision making. In the current work the TRAC/RELAP Advanced Computational Engine (TRACE) code was used to study the transient system response for the NuScale power module to a beyond-design-basis event where the control rods fail to insert. The regulatory purpose of the current work was to confirm the results of analyses provided by the applicant as part of their probabilistic risk assessment analysis that demonstrates that the core is not damaged under certain conditions when the control rods fail to insert. The NRC staff performed calculations using a TRACE model of the NuScale power module that includes both the primary and secondary systems that simulates a loss of alternating-current power and complete failure of the module protection system to insert control rods. The NRC staff analyses demonstrate that under these conditions the reactor stabilizes at a new stable condition with minor power and pressure oscillations where core power is balanced by passive heat removal.