ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Peter Yarsky
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 653-664
Technical Paper | doi.org/10.1080/00295450.2020.1800308
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission (NRC) staff often performs confirmatory analysis to support regulatory decision making. In the current work the TRAC/RELAP Advanced Computational Engine (TRACE) code was used to study the transient system response for the NuScale power module to a beyond-design-basis event where the control rods fail to insert. The regulatory purpose of the current work was to confirm the results of analyses provided by the applicant as part of their probabilistic risk assessment analysis that demonstrates that the core is not damaged under certain conditions when the control rods fail to insert. The NRC staff performed calculations using a TRACE model of the NuScale power module that includes both the primary and secondary systems that simulates a loss of alternating-current power and complete failure of the module protection system to insert control rods. The NRC staff analyses demonstrate that under these conditions the reactor stabilizes at a new stable condition with minor power and pressure oscillations where core power is balanced by passive heat removal.