ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC staff: “We’ve already made progress”—Part 2
It’s been a busy eight months, Mike King told the Nuclear Regulatory Commission in a recent hearing on the immediate and projected impacts of new federal legislation aimed at supporting the nation’s current nuclear energy renaissance.
H. Andrews, S. Phongikaroon
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 617-626
Technical Paper | doi.org/10.1080/00295450.2020.1776538
Articles are hosted by Taylor and Francis Online.
This study sets out to demonstrate the capability of using electrochemistry and laser-induced breakdown spectroscopy (LIBS) for concentration prediction of multiple species in a molten salt system at 773 K. Samples contained UCl3 ranging from 0 to 10 wt%, GdCl3 ranging from 0 to 5 wt%, and MgCl2 ranging from 0 to 1.5 wt%, with LiCl-KCl eutectic salt as the remainder. Multivariate models were produced using semi-differential cyclic voltammograms (SDCVs) and normalized spectra acquired from LIBS. The SDCV model best predicted UCl3 levels, while the LIBS model best predicted GdCl3 and MgCl2 concentrations. A third model was developed by fusing the SDCV and LIBS signals. This model predicted UCl3 well and predicted GdCl3 and MgCl2 better than previous models. This model was then evaluated by using blind samples. The model predictions correlated well with inductively coupled plasma mass spectroscopy measurements, passing a t-test at a 95% confidence level.