ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC reviewing 2 unplanned shutdowns at South Texas Project
The U.S. Nuclear Regulatory Commission began a special inspection last week at South Texas Project nuclear power plant into two incidents at the site, which led to separate, unplanned shutdowns of both Units 1 and 2.
S. Stimpson, T. Pandya, K. Royston, B. Collins, A. Godfrey
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 582-595
Technical Paper | doi.org/10.1080/00295450.2020.1770557
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors is developing the Virtual Environment for Reactor Applications (VERA), and the MPACT code, which is the primary deterministic neutron transport solver in VERA, provides sub-pin level flux and power distributions as part of full-scale cycle depletion and analysis. In such calculations, an important aspect is the radial reflector treatment. To improve the fidelity of the radial reflector treatment, MPACT was extended to approximate the modeling of the reactor’s structural components such as the core shroud, barrel, neutron pads, and vessel. This work explores several modeling configurations with varying levels of fidelity and computational burden and assesses the importance of modeling fidelity on the eigenvalue and pin power distribution.
Two two-dimensional (2-D) problems were analyzed to assess the impact on eigenvalue and pin power distributions with low-fidelity, coarse square cell reflector representations: (1) a Watts Bar Nuclear Plant Unit 1 (WBN1) quarter-core slice with depletion and (2) an AP1000 quarter-core slice. The analyses showed that the effect on eigenvalue is fairly small, but the effect on pin power is more pronounced, especially locally in the assemblies closest to the periphery, where the maximum pin power difference is nearly 3.5% in the AP1000 case. Two additional 2-D problems were used to assess the comparison between the low-fidelity coarse square cell treatment and a high-fidelity geometric representation that uses subpin material specification: (1) the same WBN1 quarter-core slice and (2) a representative model of the NuScale small modular reactor (SMR), which features a solid reflector design with moderator holes. These results demonstrate that even a coarse, low-fidelity representation adequately captures the necessary simulation characteristics. Last, these capabilities were applied to the 2-D WBN1 quarter-core depletion to assess the impact on vessel fluence using VeraShift. From adjoint calculations, pins along the periphery were observed to be of highest importance for fluence calculation, so the impact of the reflector representation in MPACT could theoretically substantially affect the predicted result. However, it was observed that the change in pin powers along the periphery minimally impacts the maximum vessel fluence with a difference within the statistical uncertainty but provides terrific insight on the sensitivity of the peripheral pins.