ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Mohamed Elsamahy, Tarek F. Nagla, Mohamed A. E. Abdel-Rahman
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 558-574
Technical Paper | doi.org/10.1080/00295450.2020.1792742
Articles are hosted by Taylor and Francis Online.
This paper proposes the application of a pattern recognition–based technique to enhance the process of control rod position identification in pressurized water reactors (PWRs). The proposed technique employs a multivariant analysis technique, namely, principal component analysis (PCA) and clustering analysis (CA) to identify the position of the PWR control rod using its impact on the core radial thermal neutron flux along the axial track of motion. The results of these investigations have shown that the proposed technique successfully removed the limitation on the data size and any limitations imposed by outlier samples, extracted the noise, and provided near-instantaneous analytical and visual ways for position identification process with excellent generalization fitting and prediction efficiencies. In the context of this paper, multiple in-depth simulations are conducted to ascertain the efficiency of the proposed technique in identifying the control rod positions. These simulations have been conducted using a Westinghouse 2772-MW(thermal) PWR benchmark at 100% thermal power generation, where a three-dimensional TRITON FORTRAN-code has been utilized to simulate the radial thermal neutron flux of the PWR core. The PCA model is developed, tested, and generalized using the SIMCA software package. In addition, CA is also performed via the Minitab statistics software package in order to confirm the efficiency of the proposed technique.