ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Charles W. Forsberg, Patrick J. McDaniel, Bahman Zohuri
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 543-557
Technical Paper | doi.org/10.1080/00295450.2020.1785793
Articles are hosted by Taylor and Francis Online.
Electricity markets are changing because of (1) the addition of wind and solar generating capacity and (2) the goal of a low-carbon electricity grid. The large-scale addition of wind and solar photovoltaics results in low wholesale electricity prices at times of high wind and solar output and high prices at times of low wind and solar input. Today, gas turbine combined cycle (GTCC) plants burning natural gas or oil provide dispatchable electricity and provide the most economic method to match electricity production with demand. Nuclear Air-Brayton Combined Cycles (NACCs) with heat storage and a thermodynamic topping cycle enable base-load nuclear plants with sodium or salt coolants to provide dispatchable electricity to the grid and heat to industry. This capability maximizes nuclear plant revenue and enables a base-load nuclear reactor with NACCs to be a low-carbon replacement for a GTCC. The NACC power cycle, alternative heat storage technologies, and development status of the different technologies are described. The technology applies to other heat generating technologies including high-temperature concentrated solar power and future fusion systems.