ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Wang, T. Beuthe, X. Huang, A. Nava Dominguez, A. V. Colton, B. P. Bromley
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 469-493
Technical Paper | doi.org/10.1080/00295450.2020.1788302
Articles are hosted by Taylor and Francis Online.
The use of advanced uranium-based and thorium-based fuel bundles in pressure tube heavy water reactors (PT-HWRs) has the potential to improve the utilization of uranium resources while also providing improvements in performance and safety characteristics of PT-HWRs. Previous lattice physics and core physics studies have demonstrated the feasibility of using such advanced fuels; however, thermal-hydraulic (T-H) studies are required to confirm that these advanced fuels will have adequate T-H safety margins. Preliminary system T-H transient simulations have been performed for a 700-MW(electric)–class PT-HWR in a postulated loss-of-coolant accident (LOCA) using the CATHENA code. One purpose of this work was to demonstrate that such simulations of a PT-HWR with advanced fuels could be set up and executed successfully in a CATHENA transient simulation model. The other purpose was to evaluate the peak fuel sheath and fuel centerline temperatures in two designated fuel channels containing advanced uranium-based or thorium-based fuel during a LOCA transient event. In the CATHENA simulation models, a PT-HWR core is fueled with conventional 37-element natural uranium fuel bundles in 378 out of 380 fuel channels while two designated fuel channels, the channel with the highest total power and the channel containing the bundle with the highest power level, are filled with various types of advanced fuels. Results indicate that setting up these models is feasible and that the predicted peak fuel centerline temperatures and peak sheath temperatures for the advanced fuel channels are well below the fuel melting points and the rapid oxidation temperature for the Zircaloy-4 sheath/clad (~1200°C), respectively. These preliminary results provide confidence that the advanced fuels will likely have adequate T-H safety margins in a transient LOCA event in a PT-HWR. These results set the stage for more detailed and comprehensive system T-H models of PT-HWRs fueled entirely with advanced uranium-based or thorium-based fuels.