ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Vinod Mubayi, Robert Youngblood
Nuclear Technology | Volume 207 | Number 3 | March 2021 | Pages 406-412
Technical Paper | doi.org/10.1080/00295450.2020.1775452
Articles are hosted by Taylor and Francis Online.
The safety goals adopted by the U.S. Nuclear Regulatory Commission (NRC) consist of two qualitative safety goals backed up by two quantitative health objectives (QHOs). The QHOs establish risk limits for severe accidents in terms of their radiological consequences to affected individuals, in particular, the average individual health risks of early fatality and latent cancers from radiation exposure of members of the public living in the vicinity of a nuclear power plant. This paper is devoted to a reexamination of the coverage of the current safety goals as they constrain (or fail to constrain) the total (radiological and nonradiological) risk posed by nuclear power plant operation. Specifically, we suggest the need to address societal consequences. By societal consequences, we mean measures of consequences that reflect the number of people affected and the offsite effects both radiological and nonradiological, not just the individual risks. Recent Level 3 probabilistic risk assessments suggest that given a high likelihood of evacuation of the close-in population before any release occurs the current QHOs are satisfied by large margins, and the experience of an actual severe accident at Fukushima showed that actual human health effects from released radiation were not the dominant consequences, as there were no early fatalities and no measurable increases expected in cancer rates above the baseline rates in the Japanese population. Hence, regardless of accident probability, Fukushima-type accidents with evacuation would satisfy the NRC’s health-related safety goals. However, there were very significant societal costs in that large numbers of people were relocated for long periods and there was substantial property damage and community disruption along with the costs of recovery and decontamination. We argue that, in addition to the risks addressed in the current safety goals, societal risk should also be considered. This paper discusses specific possibilities for a goal and an associated quantitative objective.