ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
January 2024
Latest News
Eisenhower’s “Atoms for Peace” at 70
Seventy years ago to the day, President Dwight D. Eisenhower gave his historic address to the United Nations General Assembly in New York City. (See December 2023 Nuclear News's “Leaders” column to read the reflections of Kathryn Huff, the Department of Energy’s assistant secretary for nuclear energy, on the speech’s anniversary.)
Robby Christian, Asad Ullah Amin Shah, Hyun Gook Kang
Nuclear Technology | Volume 207 | Number 3 | March 2021 | Pages 376-388
Technical Paper | doi.org/10.1080/00295450.2020.1777035
Articles are hosted by Taylor and Francis Online.
This study proposes an interpolation-based response surface surrogate methodology to manage a large number of scenarios in dynamic probabilistic risk assessment. It adopts the shape Dynamic Time Warping algorithm to cluster the interpolation neighborhood from time series sample data. The interpolation method was adapted from Taylor Kriging to allow a reduced-order model of the Taylor series. In order to demonstrate its applicability to complex issues in risk assessment for nuclear engineering, an example risk response surface to estimate emergency core cooling system (ECCS) criteria for triplex silicon carbide (SiC) accident-tolerant fuel was constructed. The response surface was exploited to estimate the cumulative failure probability of the fuel cladding structure due to the uncertainties in operator actions and safety systems. The functional failures were assessed based on a combination of individual layer failures computed by coupling Risk Analysis Virtual Environment software with a pressurized water reactor 1000-MW(electric) RELAP5 model and the in-house fuel performance assessment module. Results showed that SiC cladding failure probability spiked less than 1 min after a large-break loss-of- coolant accident whenever the current ECCS criteria for Zircaloy-4 (Zr-4) cladding was used. However, it still provides an increased safety margin of three orders of magnitude compared to Zr-4. This positive margin could be utilized to relax active ECCS requirements by allowing deviations of up to 450 s in its actuation time. The proposed surrogate methodology generated a response surface of SiC cladding failure probability reasonably well, with a significant savings of computation time. This methodology is expected to be useful in the analysis of system response with complex uncertainty sources.