ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Jin-Yang Li, Long Gu, Hu-Shan Xu, Yong Dai, You-Peng Zhang, Cun-Feng Yao, Rui Yu, Lu Zhang, Sheng Yang
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 270-284
Technical Paper | doi.org/10.1080/00295450.2020.1757963
Articles are hosted by Taylor and Francis Online.
To study the burnup features of accelerator-driven subcritical systems (ADSs), simplified transmutation trajectories are imperative to make the simulation process more effective with acceptable precision. This process has long been considered a challenging task since the construction of simplified burnup chains often need complex judgments and experiences. Additionally, the burnup analysis of ADSs requires more specific burnup chains for some important isotopes with minor actinides (MAs) and long-lived fission products (LLFPs) included. However, some general burnup codes lack these chains or pack some particularly important isotopes into a kind of pseudo nuclide. In this context, a PyNE-based burnup module (PyNE-Burn) has been developed to solve the burnup problem in ADSs, where three types of isotopes have been considered to construct the simplified burnup chains and weight-sorted judgment criteria have been proposed to determine which nuclides should be included. Moreover, the scan-mode-method-based high-order differential expression has been employed to substitute the legacy method in solving the linearized burnup chains. Finally, numerical tests have been carried out to demonstrate that the PyNE-Burn module has acceptable accuracy and can be used in dealing with the burnup problem in ADSs.