ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Rosendo Borjas Nevarez, Bruce McNamara, Frederic Poineau
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 263-269
Technical Paper | doi.org/10.1080/00295450.2020.1757961
Articles are hosted by Taylor and Francis Online.
For several decades, extensive research has been performed on the recovery and purification of zirconium from spent nuclear fuel cladding using a variety of chlorination reaction processes. After the reaction between fuel cladding and chlorine gas, zirconium tetrachloride is separated from other chloride species based on their boiling/sublimation points; however, the presence of iron and niobium chloride impurities limits the efficiency of these processes. In this work, chlorination products of Zr, Fe, and Nb mixtures were analyzed by thermogravimetric analysis, and the results suggest that Fe impurities cannot be removed via chlorination alone. Purification of zirconium from Zircaloy-2, Zircaloy-4, and a Zr-Nb alloy was performed via hydrochlorination using a sealed tube reaction system. The purity of the final ZrCl4 products is higher than 99.99% after successful removal of Fe and Nb.