ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Anna-Elina Pasi, Henrik Glänneskog, Mark R. St.-J Foreman, Christian Ekberg
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 217-227
Technical Paper | doi.org/10.1080/00295450.2020.1762456
Articles are hosted by Taylor and Francis Online.
In the event of a severe nuclear accident, one major concern is the release of radioactive material into the environment causing potential exposure of the general public to radiation. Among the volatile radionuclides are a range of tellurium isotopes. Due to the radioactivity and the volatility of tellurium, it has to be taken into account when assessing the overall effects of an accident. The interest in tellurium is not limited only to its release but also to the fact that some tellurium isotopes decay to iodine, and thus affect the iodine release behavior. The release and transport behavior of tellurium has been investigated over the past decades, however, the aqueous chemistry of tellurium in the complex containment sump system is still unclear. This study presents the behavior of tellurium dioxide in simplified containment sump conditions in relation to dissolution, redox reactions, and interactions with water radiolysis products. The results indicate that radiolysis products have a significant effect on tellurium chemistry in both a reducing and oxidizing manner depending on the solution composition. The redox reactions also affect the solubility of tellurium. The results show that the current information used to assess tellurium source term needs to be reevaluated for both severe accident management and for code validation purposes.