ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wilson Cowherd, John Stillman, John Gahl, Leslie Foyto, Erik Wilson
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 167-181
Technical Paper | doi.org/10.1080/00295450.2020.1763720
Articles are hosted by Taylor and Francis Online.
A new type of low-enriched uranium (LEU) fuel based on an alloy of uranium and molybdenum is expected to allow the conversion of U.S. domestic high-performance research and test reactors requiring high density fuel from highly enriched uranium (HEU) to LEU. The University of Missouri Research Reactor (MURR®) has undergone design and performance calculations for conversion to this LEU fuel. Presented in this paper is the analysis of a crucial step in the conversion process: the sequence of MURR transition cores from all fresh to equilibrium burnup LEU operations. During the initial conversion from HEU to LEU fuel, MURR will operate atypically due to the lack of burned LEU elements. Given the constraints of MURR operation and experiments, a proposed transition scheme minimizes the time MURR operates atypically compared to the prototypic cycles currently run with HEU fuel and moves quickly to the same sort of equilibrium cycles for the LEU fuel.