ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yang Hong Jung, Seung Je Baik, Young Gwan Jin
Nuclear Technology | Volume 207 | Number 1 | January 2021 | Pages 94-102
Technical Paper | doi.org/10.1080/00295450.2020.1738795
Articles are hosted by Taylor and Francis Online.
A radioactive corrosion product, Chalk River unidentified deposit (crud) was sampled and analyzed using an electron probe micro-analyzer with zinc-injected spent nuclear fuel rods (HU Unit 1, actual burnup 49 655 MWd/tonne U). Hot-cell facilities, a space for handling highly radioactive materials, were used as a way to collect crud deposited in the fuel rod cladding tube at a specific location of the spent fuel rod. A soft collection method for collecting crud using rubbings or adhesive tape was used to collect a sample, and a sample was collected with hard collection using a steel knife from the cladding tube of the fuel rod. The spent fuel rods were used for two cycles burned after zinc was injected into the primary coolant, which is known to inhibit the generation of crud. To compare the analysis results of the soft and hard collection methods for sampling crud, the results of the crud collected using an ultrasonic wave system were analyzed. The crud used in this study used burned fuel rods for two cycles after zinc ions were injected into the primary coolant. Based on the results, the Ni/Fe ratio can be estimated to be about 1.18. The Ni/Fe ratio value of 1.18 derived from this study is not much different from the Ni/Fe ratio values derived from nuclear power plants operating around the world.