ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Paul R. Miles, Jared A. Cook, Zoey V. Angers, Christopher J. Swenson, Brian C. Kiedrowski, John Mattingly, Ralph C. Smith
Nuclear Technology | Volume 207 | Number 1 | January 2021 | Pages 37-53
Technical Paper | doi.org/10.1080/00295450.2020.1738796
Articles are hosted by Taylor and Francis Online.
Recent research has focused on the development of surrogate models for radiation source localization in a simulated urban domain. We employ the Monte Carlo N-Particle (MCNP) code to provide high-fidelity simulations of radiation transport within an urban domain. The model is constructed to employ a source location () as input and return the estimated count rate for a set of specified detector locations. Because MCNP simulations are computationally expensive, we develop efficient and accurate surrogate models of the detector responses. We construct surrogate models using Gaussian processes and neural networks that we train and verify using the MCNP simulations. The trained surrogate models provide an efficient framework for Bayesian inference and experimental design. We employ Delayed Rejection Adaptive Metropolis (DRAM), a Markov Chain Monte Carlo algorithm, to infer the location and intensity of an unknown source. The DRAM results yield a posterior probability distribution for the source’s location conditioned on the observed detector count rates. The posterior distribution exhibits regions of high and low probability within the simulated environment identifying potential source locations. In this manner, we can quantify the source location to within at least one of these regions of high probability in the considered cases. Employing these methods, we are able to reduce the space of potential source locations by at least 60%.