ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Qiufeng Yang, Jianbang Ge, Yafei Wang, Jinsuo Zhang
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1769-1777
Technical Paper | doi.org/10.1080/00295450.2020.1757976
Articles are hosted by Taylor and Francis Online.
The electrochemical behavior of La2O3 was investigated in LiF-NaF-KF (FLiNaK, 46.5-11.5-42.0 mol %) eutectic at 700°C. In the electrochemical tests, two kinds of working electrodes, i.e., tungsten and graphite, were utilized. The present study showed that La3+ ions can be deposited in the form of La metal on a tungsten cathode or LaC2 on a graphite cathode, and O2− can be removed in the form of CO/CO2 using a graphite anode. Therefore, a graphite or tungsten cathode (for La3+ removal), and a graphite anode (for O2− removal) are good options to remove both La3+ and O2− from the molten salts. In addition to the electrochemical tests, inductively coupled plasma mass spectroscopy analysis was used to measure the concentration of the lanthanum element and X-ray powder diffraction techniques were applied to determine the chemical forms of lanthanum in the salt. It turned out that the solubility of La3+ in the molten FLiNaK was 6.81 × 10−4 wt% at 700°C and LaOF was formed by the chemical reactions between La2O3 and alkali fluorides during the heating process.