ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Charles W. Forsberg
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1659-1685
Technical Paper | doi.org/10.1080/00295450.2020.1743628
Articles are hosted by Taylor and Francis Online.
Energy markets are changing because of (1) the addition of nondispatchable wind and solar electric generating capacity and (2) the goal of a low-carbon energy system. The large-scale addition of wind and solar photovoltaics results in low wholesale electricity prices at times of high wind and solar output and high prices at times of low wind and solar input. The goal of a low-carbon energy system requires a replacement energy production system with assured peak energy production capacity.
To minimize costs, capital-intensive nuclear reactors should operate at base load. To maximize revenue (minimize sales at times of low prices and maximize sales at times of high prices), the power cycle should provide variable heat and electricity. This requires the power cycle to (1) include heat storage that enables peak heat and electricity output that may be several times base-load reactor output and (2) provide assured peak power production. Assured peak power production requires the capability to efficiently burn low-carbon fuels such as hydrogen and biofuels. Alternatively, nuclear systems with base-load reactors can be built to produce peak electricity and storable hydrogen for industry, biofuels, and other markets. All power reactors with appropriate system designs can meet these requirements.
The lowest-cost technologies for heat storage, assured peak power production, and hydrogen production require high-temperature heat. This economically favors salt-cooled reactors with the average temperature of delivered heat of about 650°C versus heat delivered at lower average temperatures from other reactors such as light water reactors: 280°C, sodium-cooled reactors: 500°C, and high-temperature helium-cooled reactors: 550°C. Salt-cooled reactors include (1) Fluoride-salt-cooled High-temperature Reactors (FHRs) with solid fuel and clean salt, (2) Molten Salt Reactors (MSRs) with fuel dissolved in the salt, and (3) fusion reactors with salt blankets. Future energy markets, nuclear systems (heat storage, assured peak energy production capacity, and hydrogen production) designed for such markets and the power cycle technologies that economically favor salt reactors are described.