ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Karl Britsch, Mark Anderson
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1625-1641
Critical Review | doi.org/10.1080/00295450.2019.1682418
Articles are hosted by Taylor and Francis Online.
Interest in molten salts for next-generation nuclear reactors has led to increasing design work over the last several years. Much of this builds off historic heat transfer experiments like those of the Molten Salt Reactor Program; however, there is no comprehensive report covering experimental heat transfer in these fluids. This paper attempts to pull together all available reports on fluoride salt heat transfer to aid further research in this area. The data largely support the hypothesis that molten salt heat transfer will be easy to predict so long as salt properties are well known. This paper does not show any consistent indications of resistive films, entrained gases, or radiation heat transfer, but other unknowns are present. In addition to salt properties, these include unusual mass transfer and transition flow conditions.