ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yifeng Wang, Teklu Hadgu
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1584-1592
Technical Paper | doi.org/10.1080/00295450.2019.1704577
Articles are hosted by Taylor and Francis Online.
In high-level radioactive waste disposal, a heat-generating waste canister is generally encased with a layer of bentonite-based buffer material acting as an engineered barrier to limit water percolation and radionuclide release. The low thermal conductivity of bentonite (~0.5 W/m∙K) combined with a high thermal loading waste package may result in a high surface temperature on the package that can potentially impact the structural integrity of the package itself as well as the surrounding buffer material. We show here that the thermal conductivity of bentonite can be effectively enhanced by embedding copper wires/meshes across the buffer layer to form fully connected high heat conduction pathways. A simple calculation based on Rayleigh’s model shows that a required thermal conductivity of 5 W/m∙K for effective heat dissipation can be achieved simply by adding ~1 vol % of copper wires/meshes into bentonite. As a result, the peak surface temperature on a large waste package such as a dual-purpose canister can be reduced by up to 300°C, leading to a significant reduction in the surface storage time for waste cooling and therefore the overall cost for direct disposal of such waste packages. Because of the ensured full thermal percolation across the buffer layer, copper wires/meshes turn out to be much more effective than any other materials currently suggested (such as graphene or graphite) in enhancing the thermal conductivity of buffer material. Furthermore, the embedded copper wires/meshes can help reinforce the mechanical strength of the buffer material, thus preventing the material from a potential erosion by a possible intrusion of dilute groundwater.