ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Helen Winberg-Wang, Ivars Neretnieks
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1553-1565
Technical Paper | doi.org/10.1080/00295450.2020.1712951
Articles are hosted by Taylor and Francis Online.
An experiment with a vertical slot with horizontally seeping water with a dye diffusing from below was performed to help validate and visualize the Q-equivalent model, which describes the mass transfer rate from a source into flowing water, such as that in a repository for nuclear waste. The Q-equivalent model is used for quantifying mass transport in geological repositories. However, the tracer propagated much slower and to a lesser extent than predicted by the model. It was found that the tracer gave rise to a small density gradient that induced buoyancy-driven flow, overwhelming that driven by the horizontal hydraulic gradient. This dramatically changed the mass transfer from the dye source into the water in the slot. For the release of contaminants, this can have detrimental as well as beneficial effects, depending on whether positive or negative buoyancy is induced. These observations led to an analysis of when and how density differences in a repository can influence the release and further fate of escaping radionuclides in waste repositories. This and other experiments also showed that laboratory experiments aimed at visualizing flow and mass transfer processes in fractures could be very sensitive to the heating of the dye tracers by the lighting in the laboratory.